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Abstract. The remanence of an isotropic nanocrystalline exchange-coupled composite system
(comprising hard and soft magnetic phases) is investigated analytically within a simple (one-
dimensional) micromagnetic model, in which only exchange and anisotropy energies are
considered. For a soft grain with size much less than its own Bloch wall width, our analysis
shows that the magnetization distribution in the soft phase is linearly dependent upon position,
which we show is responsible for the significant enhancement observed in composite systems.
Furthermore, we show that a good estimate of the remanence can be provided by a simple formula,
which is easily calculated by hand.

1. Introduction

The rare-earth–iron and rare-earth–cobalt magnetic materials are widely regarded as possibly
the best available permanent magnetic materials because they possess the largest coercivity
and thus the greatest energy product [1]. One drawback, however, is that these materials are
chemically active and rather expensive to produce. Moreover, the saturation magnetizations
MS of these materials are generally much lower than those of soft magnetic materials. To
further increase the energy product, an exchange-coupled composite material is proposed,
with the hard phase to provide high coercivity and the soft phase to provide high saturation
MS and remanenceMr . These new materials are not only less expensive, but also less active
as a result of a larger volume fraction of the relatively cheap soft magnetic materials, which
envelop the hard phase.

The quality of these new materials depends largely on the microstructure. There have been
many numerical and analytical studies of the influence of the microstructure of the composite
materials on their magnetic properties [2–7]. While the numerical work can deal with more
complicated problems, the analytical studies can often yield better insights into the physical
understanding of the underlying phenomenon. To enable an analytical solution to be carried
out, such studies often assume the presence of special easy-axis directions (which are normal
to the applied field), although it has been found that the easy-axis orientations are random in
many experimental studies [8–18]. In our work, we shall relax this restriction and show that an
analytical solution is possible if we make some simplifying but reasonable assumptions about
the remanent state.

The analytical modelling of remanence enhancement for single-phased magnetic materials
has already been presented in reference [19]. In the present work, we concentrate on remanence
enhancement of composite materials. The approach that we adopt may provide some insights
into the phenomenon of remanence enhancement in composite magnetic systems.
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2. The analytical model

The analytical model is a chain of rectangular nano-grains with soft-phaseα-Fe grains and
hard-phase (e.g. Nd2Fe14B) grains arranged alternatively, with the crystal easy axis varying
from grain to grain. As a first step we shall deal with a triple-grain system shown in figure 1
with a soft-phasedα-Fe grain enclosed by two hard-phased grains.

y(Ls+Lh)/2-(Ls+Lh)/2 0 Ls/2-Ls/2

Easy axis of
hard-phased grain 2

The linear magnetic
moment distribution
in a-Fe grain

Z, H
Magnetic
field
direction

a1
a2

Easy axis of
hard-phased grain 1

Figure 1. A magnetically soft grain (α-Fe) framed by two hard magnetic grains (e.g. Nd2Fe14B).
The applied magnetic fieldH and the two easy axes of the hard grains lie in the same plane. The
magnetic moment orientations in theα-Fe grain lie between two easy-axis directionsα1 andα2,
and change linearly withy.

The magnetic field is applied along thez-direction. For simplicity, the magnetization
distribution is assumed to be uniform over thex–z plane. Furthermore, the easy axes of the
hard grains and the magnetic moments will be restricted to the samey–z plane. This approach
has effectively reduced the problem to a one-dimensional one, in which a plane-isotropic
easy-axis distribution is assumed.

The one-dimensional distribution of the magnetic moment in equilibrium states can be
found from the variation of the Gibbs free energyG of the system:

δG ≡ δ
∫
g dv = 0 (2.1)

whereg is the volume density of the Gibbs free energy. Normallyg consists of four terms,
namely, the exchange energy, the anisotropy energy, the stray field, and the magnetostatic
energy of the magnetization in an applied field.

In our present work, we investigate the remanent magnetization of nanocrystalline com-
posite materials. The grains are initially magnetized in the positivez-axis direction (see
figure 1), and the field is reduced to zero after the magnetization. Since the applied magnetic
field is zero in the remanent state, the magnetostatic energy term vanishes. The stray-field
energy, on the other hand, is an important term expressing the long-range magnetostatic
interaction that can affect the actual magnetization distribution. However, for rare-earth
nanocrystalline composite materials, this interaction plays a less pivotal role in remanence
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enhancement compared to the exchange interactions [4, 6, 7, 19]. In fact, it is conceivable to
attribute the remanence enhancement entirely to intergrain exchange interactions. Thus, for the
sake of simplicity, this term will henceforth be omitted from further discussion. Consequently,
g contains only two terms, namely, the exchange energy and the anisotropy energy:

g = A(∇θ)2 +K sin2(θ − α) (2.2)

whereA denotes the exchange energy constant,K is the anisotropy constant,θ is the angle
between the magnetization and the applied field (z-axis), andα is the angle between the easy
axis and the applied field (figure 1). In our model, the easy-axis distribution is plane isotropic;
in the remanent state,α is a random number varying from−π/2 toπ/2 [19].

The variation of the Gibbs energy functional leads to two independent equations. The
variation of the volume part results in the well-known Euler–Lagrange equation, which, in one
dimension, can be written as

∂g

∂θ
= d

dy

[
∂g

∂(dθ/dy)

]
. (2.3)

The variation of the surface contributions to the energy, on the other hand, results in the Carl–
Weierstrass relation. In any surface of the magnetic material, this relation has to be fulfilled.
In one dimension, this boundary condition may be written as

A
dθ

dy
= constant. (2.4)

For composite materials with different exchange constants, this relation is important for the
grain boundary. In our model, for instance, the boundary condition (equation (2.4)) leads to the
discontinuity of the first derivative ofθ with respect toy in the grain boundary (cf. figure 2(a)).
Using equations (2.2), (2.3), and (2.4), we can now determine the direction of magnetization
for each spatial point of the magnetic system.

3. The distribution of the magnetization and differential remanence enhancement

Since the exchange interaction is limited to neighbouring grains only, we first consider a linear
chain of three grains with one soft-phased grain enclosed by two hard-phased grains (see
figure 1). The remanence of a magnetic system is obtained by averaging this remanence over
the whole volume. To calculate the remanence of a three-grain system, the first step is to
determine the distribution of the magnetization within this system.

Table 1. Material parameters taken from reference [5].MS , K, A, andπ1 are the saturation
magnetization, anisotropy constant, exchange energy constant, and the Bloch wall width,
respectively.

Material MS (T) K (106 J m−3) A (10−12 J m−1) π1 (nm)

Nd2Fe14B 1.61 4.3 7.7 4.2
Sm2(Fe0.8Co0.2)17N2.8 1.55 10.1 4.8 2.2
SmCo5 1.06 17.1 12.0 2.6
α-Fe 2.15 0.046 25.0 73.2

As shown in figure 1, the soft magnetic grain is bounded by−Ls/2 < y < Ls/2, where
Ls denotes the average size of the soft grain. Furthermore, from the viewpoint of symmetry, we
only consider the region defined by−(Ls +Lh)/2< y < (Ls +Lh)/2, so the magnetic system
studied consists of one soft grain and two halves of the hard grains. The superscriptss andh
denote soft and hard, respectively. Considering that the anisotropy of the hard-phased material
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(e.g. Nd2Fe14B) is about two orders of magnitude larger than that of the soft-phased material
(see table 1), a further simplification can be made by ignoring the anisotropy energy of the
soft phase. Physically, this simplification means that the magnetization within the soft-phased
grain is completely determined by the exchange hardening of neighbouring hard grains. This
assumption is valid provided that the size of the soft grain is smaller than half of the Bloch
wall width [4]. For α-Fe, this critical grain size is 36.6 nm (table 1). Studies have shown
that significant remanence enhancement can only be obtained with a soft-grain size less than
this value [9, 14–17]. The magnetization at the centre of a hard-phased grain, however, is
determined by the Stoner–Wohlfarth (S–W) model, according to which the magnetic moments
orient themselves along the easy-axis direction in the remanent state. For a hard grain with a
size several times larger than its own Bloch wall width, the magnetization near the grain centre
is unaffected by the neighbouring grains’ magnetic moment orientations.

With these assumptions, the volume density of the energy of the system under consideration
can be written as

g =


As
(

dθ

dy

)2

for |y| 6 Ls/2

Ah
(

dθ

dy

)2

+Kh sin2(θ − α) for Ls/26 |y| 6 (Ls +Lh)/2.

(3.1)

Using equation (2.3), we obtain the following expressions for the Euler–Lagrange equations:

As
d2θ

dy2
= 0 (3.2)

2Ah
d2θ

dy2
= Kh sin 2(θ − α) (3.3)

for soft- and hard-phased regions respectively. Multiplying equations (3.2) and (3.3) with
dθ/dy, we obtain, after a subsequent partial integration,

As
(

dθ

dy

)2

= Cs (3.4)

Ah
(

dθ

dy

)2

= Kh sin2(θ − α) +Ch (3.5)

whereCs andCh are the integration constants, which can be deduced from the boundary
conditions. The boundary conditions include the Carl–Weierstrass relation given by equ-
ation (2.4) at bothy = −Ls/2 andy = Ls/2, as well as the infinite-boundary condition.
The latter condition indicates that at places infinitely removed from the grain boundary, the
orientations of the magnetic moments are totally determined by the S–W model. Since the
grain size is finite, the magnetic moment furthest from the grain boundary is located at the
grain centre. Thus, we arrive at the following boundary conditions:

θ = α1 and
dθ

dy
= 0 for y = −(Ls +Lh)/2 (3.6)

θ = α2 and
dθ

dy
= 0 for y = (Ls +Lh)/2. (3.7)

One can infer from equations (3.6) and (3.7) thatCh in equation (3.5) should be zero.
Equations (2.4) and (3.4)–(3.7) are then solved to give the following distributions of the
magnetic moment orientations,

tan

(
α2 − θ

2

)
= tan

(
α2 − α1− δs

4

)
exp

[−(y − Ls/2)/1h
]

for y > Ls/2 (3.8)



Remanence enhancement in nano-structured composite magnets 3327

tan

(
θ − α1

2

)
= tan

(
α2 − α1− δs

4

)
exp

[
(y +Ls/2)/1h

]
for y < −Ls/2 (3.9)

θ = α1 + α2

2
+
y

Ls
δs for |y| < Ls/2 (3.10)

where

1h =
√
Ah/Kh

is the exchange length [6, 7] of the hard phase,δs = θ2 − θ1, and the quantityπ1h gives the
Bloch wall width of a 180◦ domain wall of a hard-phased material.θ1 andθ2 are the magnetic
moment orientations in the grain boundaries aty = −Ls/2 andy = Ls/2, respectively. Using
equation (3.5), the gradient of the magnetic moment orientationθ in the hard-phased region is
given by (

dθ

dy

)h
= ±

√
Kh

Ah
sin(θb − α) (3.11)

whereθb is continuous in the grain boundaries. It follows from equation (3.10) that

θb = (α1 + α2 ± δs)/2.
Since the distribution of the magnetic moment orientations in the soft-phased region is linear
(cf. equation (3.10)), we may write for the grain boundaries (dθ/dy)s = δs/Ls .

Using the preceding results, the Carl–Weierstrass relation (equation (2.4)) can thus be
expressed as

δs = Ls

Lex
sin

[
1

2
(α2 − α1− δs)

]
(3.12)

where

Lex = As/
√
AhKh = As1h/Ah

denotes the length of exchange hardening of the soft grains with the neighbouring hard magnetic
grains. Equation (3.12) indicates thatδs increases with bothLs and the angleα2−α1, while it
decreases withLex. The largerLex, the smallerδs , and the greater the effect of the exchange
hardening, which leads to larger remanence enhancement. Forα-Fe bounded by Nd2Fe14B,
Sm2(Fe0.8Co0.2)17, or SmCo5 (see table 1), the correspondingLexs are given by 4.34 nm,
3.59 nm, and 1.75 nm, respectively. Thus, for a given soft-grain (α-Fe) size, remanence
enhancement would be most effective if we had used Nd2Fe14B as the hard phase.

In the hard-phased grains, equations (3.8) and (3.9) show thatθ − α is exponentially
decreasing withy − Ls/2, suggesting that the magnetic orientations are largely aligned
along the easy-axis direction unless the magnetic moment is very near the grain boundary.
Besides contributing little to the enhancement, the underlying mechanism is also similar to
that operating within the single-phased system [19]. In contrast, equation (3.10) indicates that,
in the soft-phased region, the distribution of the magnetic moment orientations islinear, which
we will show is mainly responsible for the significant enhancement in the composite system.

The remanence of the soft grain is given by

Ms
r =

Ms
S

Ls

∫ Ls/2

−Ls/2
cosθ dy (3.13)

where the subscriptS denotes saturation (soMs
S means saturation magnetization of the soft

grain). Using equation (3.10), we get

Ms
r = Ms

SL
s sin(δs/2)

δs/2
cos

(
α1 + α2

2

)
. (3.14)
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Figure 2. (a) The directionθ of the magnetic moment orientation and its projection cosθ onto the
applied-field direction. The calculations are done using Nd–Fe–B as the hard phase and assuming
that the easy axes are given byα1 = −π/2 andα2 = π/2. (b) The results for single-phased
Nd–Fe–B grains [19] are also shown for comparison. In this case, however, the grain boundary is
located aty = 0 rather than aty = ±L/2.

For sufficiently smallLs , δs can be made small enough (see equation (3.12)) that

sin(δs/2)/(δs/2) ≈ 1
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thereby reducing equation (3.14) to

Ms
r ≈ Ms

SL
s cos

(
α1 + α2

2

)
for smallLs . (3.15)

This means that all magnetization moments in the small soft grain are oriented in the direction
given byθ = (α1 + α2)/2.

We know that the mechanism of remanence enhancement for exchange-coupled single-
phased grains is due to exchange interactions, which drive the magnetic moments in the grain
boundaries away from the easy-axis directions [19]. This results in a larger enhancement for a
system of small grains that exhibit a large difference in orientations between the neighbouring
easy-axis directions. This conclusion is also valid for the exchange-hardened composite grains.
Equation (3.12) shows thatδs increases withLs but is independent of the hard-grain sizeLh.
For fixedα1 andα2, the smallerδs , the larger the remanence enhancement. Thus for exchange-
hardened composite grains, remanence enhancement increases with decreasing grain sizeLs of
the soft phase. In addition, equations (3.10) and (3.12) indicate that remanence enhancement
increases withα2− α1, and the largest remanence enhancement occurs whenα1 = −π/2 and
α2 = π/2.

Forα-Fe grains enclosed by Nd2Fe14B magnetic grains, the distributions ofθ and cosθ in
the composite system are shown in figure 2(a) forα1 = −π/2 andα2 = π/2. The results [19]
for the single-phased Nd–Fe–B grains are also shown for comparison in figure 2(b). We see
that cosθ is nearly 0 in the hard-phased region while it is much larger in the soft-phased grain.
For isolated grains of the same easy-axis combination, the reduced remanence is always zero
(cos(−π/2) = cos(π/2) = 0).

On closer inspection of figures 2(a) and 2(b), one can make the following interesting
observation. As far as remanence enhancement is concerned, the soft grain in the composite
system functions similarly to the grain boundaries in the single-phased system. The magnet-
ization in the soft grain changes linearly to form a ‘transition’ region between the neighbouring
hard grains. Such a region may be viewed as behaving similarly to a region expanded from the
grain boundary of the single-phased system. Note that the grain boundary (see figure 2(b)) in
the single-phased system (of hard grains) is responsible for the remanence enhancement [19].
The soft grain, when inserted between two hard grains, then behaves like a massive grain
boundary, resulting in significantly more enhancement.

More precisely, it is the abrupt changes ofθ in the grain boundary of the single-phased
system that made it less effective in enhancing remanence in contrast to the case for the
composite system, where a gradual change inθ was noted. That this is so can be seen more
clearly from the following section.

4. Integrated remanence enhancement

The reduced remanence of the soft phaseMs
r /M

s
S is obtained by averaging the quantityMs

S cosθ
over the grain dimension of the soft phase, as well as over all possible easy-axis combinations
α1 andα2:

Ms
r /M

s
S =

(∫ π/2

−π/2
dα2

∫ π/2

−π/2
dα1

∫ Ls/2

−Ls/2
Ms
S cosθ dy

)/(
Ms
SL

s

∫ π/2

−π/2
dα2

∫ π/2

−π/2
dα1

)
(4.1)

whereMs
S is the saturation magnetization. With equation (3.14), this can be written as

Ms
r /M

s
S =

(∫ π/2

−π/2
dα2

∫ π/2

−π/2
dα1

sin(δs/2)

δs/2
cos[(α1 + α2)/2]

)/
π2. (4.2)
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If all of the magnetic moments in the soft grain lie in the direction given byθ = (α1 + α2)/2,
then we have

Ms
r /M

s
S =

(∫ π/2

−π/2
dα2

∫ π/2

−π/2
dα1 cos[(α1 + α2)/2]

)/
π2 = 8

π2
. (4.3)

Now, we can define a correction factorξ to express the fact that the magnetic moments
are not wholly aligned along the same direction (specified by(α1 +α2)/2), but point in various
directions, so we may rewrite equation (4.2) as

Ms
r /M

s
S =

8

π2
ξ. (4.4)

In general,ξ < 1, butξ → 1 for very smallLs . Largerξ simply reflects a slower and smoother
change ofθ in the soft phase, leading to larger enhancement. For our present composite system,
the calculated reduced remanence enhancement ofα-Fe, (Mr/MS)

α−Fe, andξ are given in
figure 3. The figure shows that the reduced remanence is about 0.78 for 15 nmα-Fe grains,
which is 22% more than the value 0.637 predicted from the S–W model for plane-isotropic
grains. The figure reveals that the reduced remanence decreases with increasing grain size,
which is in agreement with the experimental and numerical results.

reduced soft grain size Ls /Lex

R
ed

uc
ed

 R
em

an
en

ce
 o

f s
of

t p
ha

se
 (

M
r/M

s)
α -

F
e

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

 ξ
= (

M
r/M

s)
α -

F
e /(

8/
π2 )

1 2 3 4 5 6 7 8 9 10

Figure 3. The reduced remanence(Mr/MS)
α−Fe and ξ as functions ofLs/Lex, whereξ =

(Mr/MS)
α−Fe/(8/π2).

On the other hand, the remanence of the hard magnetic grain may be described by the S–W
model. However, we shall ignore contributions from the grain boundaries as they are relatively
small. According to the S–W model, the reduced remanence is 0.5 for three-dimensional-
isotropic easy-axis distribution, and 2/π for plane-isotropic easy-axis distribution. Thus, we
have

Mh
r /M

h
S =

2

π
. (4.5)
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The average remanence of a three-grain system (as shown in figure 1) may be obtained using
the following expression:

Mr = ηMs
r + (1− η)Mh

r (4.6)

whereη is the percentage volume occupation of the soft-phased material. Substituting equ-
ations (4.4) and (4.5) into equation (4.6), we obtain

Mr = 8

π2
ξηMs

S + (1− η) 2

π
Mh
S . (4.7)

For composite materials with significant remanence enhancement, the soft-grain size
should be less than half the domain wall width of the soft-phased material (which is≈36.6
nm forα-Fe). In this size regime,ξ is nearly 1 (see figure 3). Thus, a good estimate for the
remanence of composite materials with significant remanence enhancement can be obtained
by settingξ = 1 in equation (4.7), i.e.

Mr = 8

π2
ηMs

S + (1− η) 2

π
Mh
S . (4.8)

In figure 4, we show the calculated average remanence as a function of soft-phased grain
size for two values ofη. In the same figure, the results for the exchange-coupled single-
phased Nd2Fe14B and isolated Nd2Fe14B grains are also given for comparison. It can be seen
that remanence increases with volume occupation of the soft phase. For isolated Nd2Fe14B
grains, however, the remanence is 2MS/π = 2(1.61)/π = 1.03 T. Our previous work [19]
has suggested that the maximum remanence enhancement is only 13% for exchange-coupled
single-phased Nd2Fe14B for a given size of 10 nm. This demonstrates that the remanence for
composite systems can be enhanced through the inclusion of a soft phase, with the enhancement
increasing with its volume occupation.

Grain Size (nm)
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isolated single phased Nd2Fe14B

exchange coupled single-phase Nd2Fe14B
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Figure 4. Remanence of the composite (α-Fe + Nd–Fe–B) system as a function of grain size for
two α-Fe volume occupations.
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In addition, the figure indicates that, although the remanence decreases with increasing
grain sizeLs , the change in the remanence is negligible. Similar results were also found by
experiments [9], where it has been shown that, for a trilayer Nd–Fe–B/Fe/Nd–Fe–B system, the
remanence takes a constant value for soft-grain sizes less than about 30 nm. Experiments have
further indicated that the remanence varies approximately like 1/Ls , for Ls in the region 40–
110 nm. This, however, cannot be accounted for within our present model, as we have neglected
the effects of the soft-grain anisotropyKs , which can only be justified [4] ifLs < π1s/2.

Content of α−Fe [vol%]

0 10 20 30 40 50

M
r (

T
)

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

Our result Experimental result 

Numerical result

Figure 5. Variation of the remanence of the composite (α-Fe + Nd–Fe–B) system with the volume
occupationη of theα-Fe phase. Experimental [8] (solid circles) and numerical [7] (long-dashed
curve) results are shown for comparison. A grain size of 15 nm used in the present calculations
was chosen to match the average size of reference [8], while a value of 20 nm was used in the
numerical studies.

Figure 5 presents the calculated remanence according to equation (4.7) for a composite
system withLs = 15 nm,Lh = 30 nm, andξ = 0.96, the latter being estimated from
figure 3. Our results are in reasonable agreement with the experimental measurements. The
overestimation, particularly for smaller volume occupation of theα-Fe, however, is due to
our present model being plane isotropic rather than three-dimensionally isotropic as normally
would be encountered in experiments. According to the S–W model, the remanence of the
plane-isotropic easy-axis distribution is larger than that of the three-dimensional model, thus
accounting for the discrepancy. Furthermore, we note that the experimental rate of increase of
the remanence with the volume occupation ofα-Fe, i.e. dMr/dη, is generally larger than the
slope of our calculated curve. This can be attributed to the fact that our model is one dimensional
(where each grain has only two neighbouring grains) rather than three dimensional (where
each grain has more than two neighbours), so there is anunderestimationof the exchange
interactions, and hence a smaller gradient.

The last point can be shown more explicitly as follows. Consider a three-dimensional
(3D) system in which each and every cubic soft grain has, on average,n neighbouring hard
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grains with easy axesαi , i = 1, 2, . . . , n. According to equation (3.15), it is reasonable to
assume that the orientationθc of the magnetic moment at the centre of the soft grain in the
remanent state can be written as

θc =
( n∑
i=1

αi

)/
n. (4.9)

To a good approximation, we may, following earlier discussions, assume that all magnetizations
in the soft grain are oriented along this directionθc, so we can write the remanence for the
soft grain asMs

r = Ms
S cosθc. Supposing that the distribution of the easy axis is still plane

isotropic, the average remanence contributed by the soft grain is then given by

Ms
r = Ms

S

(∫ π/2

−π/2

∫ π/2

−π/2
· · ·
∫ π/2

−π/2
cosθc dα1 dα2 · · · dαn

)/
πn

= Ms
S

[
sin(π/2n)

π/2n

]n
. (4.10)

Thus, for instance, assumingn to be 6, we getMs
r ≈ 0.934Ms

S .
By differentiating equation (4.8) with respect toη, we get the gradient of theMr–η plot

for a one-dimensional (1D) composite system (figure 1) as(
dMr

dη

)
1D

= 8

π2
Ms
S −

2

π
Mh
S . (4.11)

Similarly, for the 3D grain distribution withn = 6, the corresponding expression is(
dMr

dη

)
3D

= 0.934Ms
S −

2

π
Mh
S . (4.12)

It is clear therefore that an extension into 3D for the grain distribution will result in a steeper
slope, thereby bringing it into closer agreement with experiments. For sufficiently largeη, on
the other hand, the observed drop in remanence is expected since the average number of hard
neighbouring grains would have decreased as some of these may have been replaced by soft
ones.

5. Conclusions

The remanence enhancement of an isotropic nanostructured composite magnetic system has
been discussed in detail. The magnetic moments in the soft-phased grains are exchange hard-
ened by the neighbouring hard-phased grains so the remanence is enhanced. Although we
have introduced a number of simplifications into our 1D model (e.g. the neglect of stray-field
energy), our results are still in reasonable agreement with the experimental and numerical
studies. The following conclusions can be reached:

(a) Firstly, remanence enhancement is largely dependent on the magnetic moment orientations
in the soft-phased grains, so the smaller the soft grain and the larger the volume occupation
of α-Fe, the greater the remanence enhancement.

(b) Secondly, althoughξ is difficult to determine accurately, we have shown thatξ is nearly
one for sufficiently small soft grains. Under this condition, a good and quick estimate for
the remanence is provided by equation (4.8).

(c) Thirdly, as far as remanence enhancement is concerned, the soft grain in a composite
system may be viewed as playing the same role as the grain boundary in the single-phased
system, only more enhanced and effective.
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[11] Neu V, Klement U, Scḧafer R, Eckert J and Schultz L 1996Mater. Lett.26167
[12] Wecker J, Schnitzke K, Cerva H and Grogger W 1995Appl. Phys. Lett.67563
[13] Liu J F and Davies H A 1996J. Magn. Magn. Mater.157/15829
[14] Ding J, McCormick P and Street R 1993J. Magn. Magn. Mater.1241
[15] Ding J, Liu Y, Street R and McCormick P 1995J. Magn. Magn. Mater.150329
[16] Ding J, Liu Y, Street R and McCormick P 1994J. Appl. Phys.751032
[17] Hadjipanayis G C and Gong W 1988J. Appl. Phys.645559
[18] Hu J F and Wang Z X 1995J. Phys.: Condens. Matter7 8655

Hu J F and Wang Z X 1996J. Phys.: Condens. Matter8 2243
[19] Zhao G P, Ong C K, Feng Y P, Lim H S and Ding J 1999J. Magn. Magn. Mater.at press


